Bloom's syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes.

نویسندگان

  • D Walpita
  • A W Plug
  • N F Neff
  • J German
  • T Ashley
چکیده

Bloom's syndrome (BS) is a rare autosomal recessive disorder of humans characterized by severe pre- and postnatal growth deficiency, immunodeficiency, genomic instability, and a predisposition to a wide variety of neoplasms. The genomic instability is evidenced in BS somatic cells as a high incidence of gaps and breaks, chromatid exchanges, chromosome rearrangements, and locus-specific mutations. BS arises from a mutation in BLM, a gene encoding a protein with homology to the RecQ helicase family. Men with BS are sterile; women have reduced fertility and a shortened reproductive span. The current immunocytological study on mouse spermatocytes shows that the BLM protein is first evident as discrete foci along the synaptonemal complexes (SCs) of homologously synapsed autosomal bivalents in late zygonema of meiotic prophase. BLM foci progressively dissociate from the synapsed autosomal axes during early pachynema and are no longer seen in mid-pachynema. BLM colocalizes with the single-stranded DNA binding replication protein A, which has been shown to be involved in meiotic synapsis. However, there is a temporal delay in the appearance of BLM protein along the SCs relative to replication protein A, suggesting that BLM is required for a late step in processing of a subset of genomic DNA involved in establishment of interhomologue interactions in early meiotic prophase. In late pachynema and into diplonema, BLM is more dispersed in the nucleoplasm, especially over the chromatin most intimately associated with the SCs, suggesting a possible involvement of BLM in resolution of interlocks in preparation for homologous chromosome disjunction during anaphase I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian BLM helicase is critical for integrating multiple pathways of meiotic recombination

Bloom's syndrome (BS) is an autosomal recessive disorder characterized by growth retardation, cancer predisposition, and sterility. BS mutated (Blm), the gene mutated in BS patients, is one of five mammalian RecQ helicases. Although BLM has been shown to promote genome stability by assisting in the repair of DNA structures that arise during homologous recombination in somatic cells, less is kno...

متن کامل

Localization of two mammalian cyclin dependent kinases during mammalian meiosis.

Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids) have led to different patterns of CDK expression. Here we show that Cdk4 colocalizes with replica...

متن کامل

A homologue of the human regulator of mitotic spindle assembly protein (RMSA-1) is present in crane fly and is associated with meiotic chromosomes.

In a previous study, we have shown that a newly identified chromosomal protein, RMSA-1 (Regulator of Mitotic Spindle Assembly-1), identified and cloned using a human autoimmune, serum, is essential for mitotic spindle assembly; we proposed that RMSA-1 was a previously unknown physiological substrate for cdc 2 kinase. In the present study, we show that this protein is present in crane fly and is...

متن کامل

A Mutation in Mtap2 Is Associated with Arrest of Mammalian Spermatocytes before the First Meiotic Division

In spite of evolutionary conservation of meiosis, many of the genes that control mammalian meiosis are still unknown. We report here that the ENU-induced repro4 mutation, identified in a screen to uncover genes that control mouse meiosis, causes failure of spermatocytes to exit meiotic prophase I via the G2/MI transition. Major events of meiotic prophase I occurred normally in affected spermato...

متن کامل

Meiotic telomere distribution and Sertoli cell nuclear architecture are altered in Atm- and Atm-p53-deficient mice.

The ataxia telangiectasia mutant (ATM) protein is an intrinsic part of the cell cycle machinery that surveys genomic integrity and responses to genotoxic insult. Individuals with ataxia telangiectasia as well as Atm(-/-) mice are predisposed to cancer and are infertile due to spermatogenesis disruption during first meiotic prophase. Atm(-/-) spermatocytes frequently display aberrant synapsis an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 10  شماره 

صفحات  -

تاریخ انتشار 1999